Intermittent Turbulence in a Global Ocean Model
نویسنده
چکیده
O ne of the hallmarks of turbulence is intermittent behavior, such as the sudden and unpredictable gusts of wind in the north of Scotland. Intermittency is related to the existence of intense and sparse coherent structures, as in atmospheric fronts, hurricanes, and tornadoes, and to small-scale vortex filaments in fully turbulent flows. Intermittent behavior has been observed in the ocean, but its implications are not fully understood. This is because computer models are unable to incorporate the full range of scales involved: from the planetary scale ( ∼ 104 km) down to the scale at which energy is dissipated ( ∼ 1 mm). A new numerical study of the global ocean breaks the problem into two parts by simulating the dynamics at large scales (greater than roughly 1 km) and then approximating how energy cascades to smaller scales [1]. The researchers—Brodie Pearson and Baylor Fox-Kemper from Brown University in Rhode Island—find spatial intermittency in the dissipation of kinetic energy at large scales where one would expect waves to smooth out fluctuations in the flow. The results imply that some regions in the ocean may dissipate much more energy than other regions, which could affect how oceanographers estimate the energy budget of the ocean from localized observations.
منابع مشابه
Ocean Currents Modeling along the Iranian Coastline of the Oman Sea and the Northern Indian Ocean
The Makran Coast (Iranian Coastline of the Oman Sea on the Northern Indian Ocean) plays an important role in country’s future navigation and trade due to its accessibility. In 2014, the Iranian Makran coastline was selected by the PMO to be studied as the Phase 6 in the series of Monitoring and Modelling Studies of Iranian Coasts with all disciplines being in investigated including currents. Al...
متن کاملSpatial and temporal variability of global ocean mixing inferred from Argo profiles
[1] The influence of turbulent ocean mixing transcends its inherently small scales to affect large scale ocean processes including water-mass transformation, stratification maintenance, and the overturning circulation. However, the distribution of ocean mixing is not well described by sparse ship-based observations since this mixing is both spatially patchy and temporally intermittent. We use s...
متن کاملEvaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations
Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...
متن کاملMicroscale Complexity in the Ocean: Turbulence, Intermittency and Plankton Life
This contribution reviews the nonlinear stochastic properties of turbulent velocity and passive scalar intermittent fluctuations in Eulerian and Lagrangian turbulence. These properties are illustrated with original data sets of (i) velocity fluctuations collected in the field and in the laboratory, and (ii) temperature, salinity and in vivo fluorescence (a proxy of phytoplankton biomass, i.e. u...
متن کاملStatistical modeling of the association between pervasive precipitation anomalies in Southern Alburz and global ocean-atmospheric patterns
Precipitation patterns are influenced by many factors, such as global atmospheric circulations to name but one. Precipitation patterns in Iran have always had great fluctuations even in a smaller scale like the Alburz Mountain Range. The present research has tried to find the relationship between global atmospheric patterns and the pervasive precipitation ones in Alburz. For doing so, 17 climat...
متن کامل